Welcome, guest! Login / Register - Why register?
[email protected] webmail now available. Want one? Go here.
Windows getting boring or just want to try something Open Source for your next Desktop Environment?! Go Zorin OS.

Paste

Pasted as Python by aayu_DS ( 1 year ago )
#!/usr/bin/env python
# coding: utf-8

# # <span style='color:DarkBlue'> Day21 - PyCaret for  </span> <span style='color:Red'> Regression </span>
# 
# - ### An open source automated library for Machine Learning.
# - ### <span style='color:Red'> Three Step Process</span> to build machine learning models for:
#     - Classification
#     - Regression
#     - Clustering
# 
# ### Self Learning Resource
# 1. Explore Pycaret mannual on Regression: <a href="https://pycaret.org/regression/"> Click Here </a>
# 2. Tutorial on Pycaret <a href="https://pycaret.readthedocs.io/en/latest/tutorials.html"> Click Here</a> 
# 
# 
# 
# ### <span style='color:DarkBlue'> Method 1</span>: To install `pycaret`
# - Installing PyCaret in Local Jupyter Notebook, Google Colab or Azure Notebooks
#     - Using conda: `!conda install pycaret`
#     - Using pip: `!pip install pycaret`
# - Installing PyCaret in Anaconda
#     - Using conda: `conda install pycaret`
#     - Using pip: `pip install pycaret`
# 
# 
# ### <span style='color:DarkBlue'> Method 2</span>: To install `pycaret` | Online manual to install pycaret <a href="https://pycaret.org/install/"> Click Here</a> 
# -  <span style='color:DarkRed'> Step 1</span>: To Install pycaret (One Time)
#     - Open Anaconda prompt
#     - Create a conda environment: `conda create --name myenv python=3.6`
#     - Activate environment: `conda activate myenv`
#     - To install pycaret: `pip install pycaret`
# 
# -  <span style='color:DarkRed'> Step 2</span>: To use pycaret environment through Jypyter notebook (Always)
#     - Open Anaconda prompt
#     - Activate environment: `conda activate myenv`
#     - Start Jupyter Notebook: `jupyter notebook`
# 
# 
# 
# ### In this tutorial we will learn:
# 
# - Getting Data: How to import data from PyCaret repository
# - Setting up Environment: How to setup an experiment in PyCaret and get started with building regression models
# - Create Model: How to create a model, perform cross validation and evaluate regression metrics
# - Tune Model: How to automatically tune the hyperparameters of a regression model
# - Plot Model: How to analyze model performance using various plots
# - Finalize Model: How to finalize the best model at the end of the experiment
# - Predict Model: How to make prediction on new / unseen data
# - Save / Load Model: How to save / load a model for future use
# 

# # <span style='color:Red'> 1. Regression: Basics </span>

# ### <span style='color:DarkBlue'>1.1 Data loading</span>

# #### Get the version of the pycaret

# In[1]:


from pycaret.utils import version
version()


# #### Loading dataset from pycaret

# In[2]:


from pycaret.datasets import get_data


# #### Get the list of datasets available in pycaret

# In[3]:


# Internet connection is required
dataSets = get_data('index')
dataSets


# #### Get boston dataset

# In[19]:


# Internet connection is required
boston_df = get_data("traffic")
# This is regression dataset. The values in medv are continuous values


# #### Get the dimention of dataset

# In[20]:


print(boston_df.shape)


# #### Remove duplicates

# In[21]:


print(boston_df.shape)
boston_df.drop_duplicates()
print(boston_df.shape)


# ### <span style='color:DarkBlue'>1.2 Parameter setting for all regression models</span>
# - Train/Test division
# - Sampling
# - Normalization
# - Transformation
# - PCA (Dimention Reduction)
# - Handaling of Outliers
# - Feature Selection

# #### Setup parameters for regression models (defaults)

# In[22]:


from pycaret.regression import *
reg = setup(data = boston_df, target='traffic_volume',fold = 15,data_split_shuffle=False)


# ### <span style='color:DarkBlue'>1.3 Run and compare the Model Performance</span>

# #### Comparing models

# In[23]:


compare_models()
# Explore more parameters


# ### <span style='color:DarkBlue'>1.4 Plot the Best Model</span>

# ##### Plot Residuals

# In[24]:


from pycaret.regression import *
reg = setup(data = boston_df, target='traffic_volume',fold = 15,data_split_shuffle=False, normalize = True, normalize_method = 'zscore')
compare_models()


# ##### Plot Error (Scatter Plot)

# In[ ]:


from pycaret.regression import *
reg = setup(data = boston_df, target='traffic_volume',fold = 15,data_split_shuffle=False, normalize = True, normalize_method = 'zscore',transformation = True, transformation_method = 'yeo-johnson')
compare_models()


# ##### Plot Learning Curve

# In[26]:


from pycaret.regression import *
reg = setup(data = boston_df, target='traffic_volume',fold = 15,data_split_shuffle=False, normalize = True, normalize_method = 'zscore', remove_outliers = True, outliers_threshold = 0.1)
compare_models()


# ##### Plot Validation Curve

# In[27]:


from pycaret.regression import *
reg = setup(data = boston_df, target='traffic_volume',fold = 15,data_split_shuffle=False, normalize = True, pca = True, pca_method = 'linear', remove_outliers = True, outliers_threshold = 0.15)
compare_models()

 

Revise this Paste

Your Name: Code Language: